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a  b  s  t  r  a  c  t

This  paper  introduces  the “discrete-time  realization  algorithm”  (DRA)  as a  method  to  find  a reduced-order,
discrete-time  realization  of  an  infinite-order  distributed-parameter  system  such  as  a  transcendental
impedance  function.  In  contrast  to  other  methods,  the DRA  is  a bounded-time  deterministic  method  that
produces  globally  optimal  reduced-order  models.  In  the  DRA  we use the  sample  and  hold  framework  along
with  the  inverse  discrete  Fourier  transform  to  closely  approximate  the  discrete-time  impulse  response.
eywords:
pherical solid diffusion
attery modeling
odel order reduction

ranscendental impedance model
ranscendental transfer function

Next,  the  Ho–Kalman  algorithm  is  used  to produce  a state-space  realization  from  this  discrete-time
impulse  response.  Two  examples  are  presented  to  demonstrate  the  DRA  using low-order  rational-
polynomial  transfer  functions,  where  the  DRA  solution  can  be compared  to known  solutions.  A  third
example  demonstrates  the  DRA  with  a transcendental  impedance  function  model  of  lithium  diffusion
in  the  solid  phase  of a lithium-ion  battery,  showing  that a third-order  discrete-time  model  can  closely
approximate  this  infinite-order  model  behavior.
. Introduction

Battery cell models are necessary to help gain insight into cell
ehavior and to be able to derive battery controls methods that are
oth effective and efficient. At the moment, available models tend
o fall into one of two categories: theoretically developed physics-
ased models, and empirically justified equivalent-circuit-based
odels. The former are posed as coupled sets of partial-differential

quations, which involve considerable computational resources
o simulate, while the latter are generally computable as sets of
ontinuous-time ordinary differential or discrete-time ordinary
ifference equations, which are relatively simple to simulate. The
radeoff is that the physics models provide much more predictive
ower and are able to apply even to unusual operating situations,
hile the empirical models should not be used to extrapolate

eyond the original data used to generate their parameters.
The motivation for research into reduced order models is driven

y a need for a model with predictive properties that closely
atch the partial differential equation (PDE) model but with com-
utational efficiency similar to equivalent-circuit models. Some
xamples of reduced order models include Subramanian’s single-
article model [1],  Cai’s proper orthogonal decomposition method
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[2],  and Smith’s 1D transcendental transfer function model [3].  Of
these, we  believe that Smith’s approach has the greatest promise
for applications that require frequent recalculation of the reduced
order model as parameters in the cell change due to various aging
mechanisms.

Smith derives Laplace (frequency) domain transfer functions
(impedance models) between cell input current and solid surface
concentration, overpotential, Butler–Volmer kinetics, and solid-
electrolyte potential difference. He then uses two  approaches to
reduce these infinite order equations. In [4],  high-order poles are
truncated and the closely placed modes are combined, taking into
account the residue at each pole (this method does not work in gen-
eral, but does for this example). In [3],  he developed a reduced order
model by selecting poles and residues to minimize a cost function
in the frequency domain via a nonlinear optimization. This process
works well when it is done only once and can be supervised by a
knowledgeable engineer. However, we  envision the parameters of
the physics models changing over a cell’s life as it ages, and the
need for unsupervised model order reduction. Nonlinear optimiza-
tion is not ideal for this scenario: results are very sensitive to initial
conditions chosen, a global optimum is not guaranteed, the final
reduced-order model dimension is not at all clear except by trial
and error, and the optimization process is unbounded in time and

computation.

In this paper, we  introduce a new method to automatically
reduce a transfer function to an optimized reduced-order model.
We call this method the “discrete-time realization algorithm” or

dx.doi.org/10.1016/j.jpowsour.2012.01.134
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:jlee3@uccs.edu
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Nomenclature

as specific surface area of porous electrode, m2 m−3

cs concentration of Li in an electrode particle, mol  m−3

cs,avg average concentration of Li in an electrode particle,
mol  m−3

cs,e surface concentration of Li in an electrode particle,
mol  m−3

Cm extended controllability matrix with m block
columns

Ds diffusion coefficient, m2 s−1

F Faraday’s constant, 96 487 C mol−1

Gk system Markov parameter k
H(s) Laplace domain transfer function
H*(s) Laplace domain transfer function with a pole at the

origin removed
H(z) discrete domain transfer function
Ĥ(z) discrete domain residual transfer function
Hd[f] discrete Fourier transform
hd[n] approximation to the continuous time impulse

response at sample n (sampling period of T1)
hs discrete-time system step response with sampling

period of Ts

hstep approximation to the continuous-time step
response (sampling period of T1)

Hl,m block Hankel matrix with l block rows and m block
columns

jLi reaction current density, A m−3

Ol extended observability matrix
O†

l
pseudo inverse of the matrix Ol

O↑
l

upward shift by one block row of the matrix Ol

T1 sampling period used to approximate the continu-
ous time response, s

Tlen duration of sampling, s
Ts sampling period of final discrete-time state space

system, s
res0 residue of the pole at the origin
Rs particle radius, m
r radial dimension, m
t time, s
U left singular vectors from the singular value decom-

position
U1 left singular vectors retained in the reduced order

model
U2 left singular vectors discarded from the reduced

order model
V  right singular vectors from the singular value

decomposition
V1 right singular vectors retained in the reduced order

model
V2 right singular vectors discarded in the reduced order

model
� diagonal matrix of ordered singular values
�1 diagonal matrix of ordered singular values retained

in the reduced order model
�2 diagonal matrix of ordered singular values dis-

D
e
p
m
m

carded in the reduced order model
� singular values of the system

RA. The DRA converts a nonlinear optimization problem into an

quivalent linear optimization problem, and robustly solves the
roblem to give a globally optimal discrete-time reduced-order
odel. The method gives insight into the “best” reduced order
odel dimension and executes in deterministic time, suitable for
urces 206 (2012) 367– 377

unsupervised operation in an embedded battery management sys-
tem.

The DRA consists of approximating the discrete-time impulse
response of a Laplace-domain transfer function and then using this
impulse response with the Ho–Kalman algorithm [5] to produce a
discrete-time state space realization. We  approximate the discrete-
time impulse response assuming a sample and hold circuit on the
input. The Ho–Kalman algorithm uses the discrete-time impulse
response to produce a state space realization.

There are different methods to produce a discrete-time impulse
response from a continuous time transfer function. If the trans-
fer function can be written as a rational polynomial, well known
techniques exist to convert to a discrete time system [6].  For tran-
scendental transfer functions, however, these techniques do not
work. It is possible to approximate the transcendental transfer
function using the infinite product expansion and then to obtain
a discrete time impulse response [7,8]. For some transcendental
transfer functions, it is possible to combine the impact of multiple
poles in a method known as residue grouping to derive a reduced
order system [4].  This approach is limited to transcendental transfer
functions where the poles can be grouped easily. Another approach
presented in [9] combines the inverse discrete Fourier transform
with H2; approximations to produce the discrete-time impulse
response. In this paper, we  chose to estimate the discrete-time
impulse response using a sample and hold framework presented
in Section 2.1.

The Ho–Kalman algorithm gives a state-space minimal realiza-
tion from the discrete-time impulse response. Most applications
use measured input and output data to derive the impulse response
[10]. The “Eigensystem Realization Algorithm” (ERA) [11] extends
the Ho–Kalman algorithm to deal with noisy input/output data
[12–14]. The Ho–Kalman algorithm and ERA have been used exten-
sively for modal analysis to determine resonant frequencies in
flexible structures in cases where it is difficult to apply an impulse
input to the system [15–20].  Unlike these cases, we  are starting with
a known transcendental transfer function and then estimating the
discrete-time impulse response. The Ho–Kalman algorithm is then
used, not with measured system data, but with the approxima-
tion of the discrete-time impulse response to find a discrete-time
state-space reduced-order model of the system described by the
transcendental transfer function.

We note that the DRA has very general application to any
problem that requires a reduced-order approximate model to a
higher-order transfer function, and is ideal for reducing the order
of distributed parameter (infinite order) systems. Modeling bat-
tery dynamics is only one possible application. In this paper,
our concern is to introduce and derive the DRA, and ultimately
to show how it can be applied to one equation that is part of
a battery model. A future paper will show how a full coupled
reduced-order battery model can be created with the aid of the
DRA.

The paper is organized as follows. In the next section, we
introduce the DRA and the procedural steps to derive the discrete-
time realization from a Laplace-domain transfer function. The
algorithm is illustrated on a simple second-order system with a
continuous-time rational-polynomial transfer function and then
on a third-order system with an integrator term. In both cases,
the results are compared to the exact output of the continuous
to discrete conversion using the zero-order hold method. The
third example illustrates the performance of the algorithm on
a transcendental transfer function that models the diffusion of
lithium in a porous electrode [4].  We  demonstrate two methods

to deal with the pole at the origin of this transfer function. The
discrete-time realization from the DRA is compared to numeric
solution using a 1-D parabolic–elliptic partial differential equation
solver.
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sequence, and is usually chosen to be a power of 2 for efficient
computations. Criteria for choosing N are given in Section 2.2.  The
inverse DFT of H [f] gives h [n], which is the approximation of
J.L. Lee et al. / Journal of Pow

. Derivation of the discrete-time realization algorithm

Given a continuous-time transfer function in the Laplace
omain, H(s) = Y(s)/U(s), and a sampling period, Ts, we want to
erive a reduced-order discrete-time state-space realization of the
orm

x[k + 1] = Ax[k] + Bu[k]
y[k] = Cx[k] + Du[k],

(1)

here the first equation is known as the “state equation” and
escribes the dynamics of the system, and the second equation

s known as the “output equation” and describes how the output
[k] ∈ Rq is computed as linear combination of the states x[k] ∈ Rp

nd the input u[k] ∈ Rm. The matrices A ∈ Rp×p, B ∈ Rp×m, C ∈ Rq×p,
nd D ∈ Rq×m are constant in this work.1 A sufficient condition for
he DRA to operate is that H(s) be an element of the Hardy space
∞, which implies that it is a strictly stable and proper system. This

s not a necessary condition, however, as we will later generalize
he method to work with systems having isolated pole(s) on the
maginary axis. Note that we do not restrict H(s) to be formulated
s a quotient of polynomials in the Laplace variable “s” (for which
ell known methods exist to find the discrete-time system).

At the heart of the DRA is the Ho–Kalman algorithm [5],  which
akes a system’s set of Markov parameters (which, for a single-input
ingle-output system are equivalent to its discrete-time impulse
esponse sequence) and computes from them a discrete-time state-
pace model of the system. To use this algorithm, we must then first
ompute the discrete-time impulse response from the continuous-
ime transfer function. The discrete-time impulse response itself
s computed from the continuous-time impulse response, which
s approximated as an inverse frequency transform of the initial
ransfer function. We  describe the algorithm in four steps, which
e preview here, and discuss in more detail in the following sub-

ections.

Sample the continuous-time transfer function in the frequency
domain at a high rate, and take the inverse discrete Fourier trans-
form (IDFT) to get an approximation to the continuous time
impulse response.

 Compute the discrete-time impulse response values from the
continuous-time response, assuming a sample and hold circuit
connected to the system input.

 Generate a discrete-time state-space realization using the deter-
ministic Ho–Kalman algorithm. This algorithm returns the
reduced order A, B, and C matrices from the discrete-time impulse
response sequence in Step 2. The order of the system is deter-
mined from the ordered singular values of the Hankel matrix
computed as part of the algorithm. The D matrix is found by the
initial value theorem.

 Transform the state space system into the desired final form using
a similarity transformation, if required.

e  note that a system having a pole at the origin does not meet the
trictly stable requirement. However, we also show that this pole
an be automatically accounted for.
We  now proceed to discuss the sample-and-hold framework,
he Ho–Kalman method, and accounting for a possible pole at s = 0
n more detail.

1 Note that the true system being approximated has state dimension n, but we are
eriving a reduced order approximation to the true system having state dimension

 ≤ n.
urces 206 (2012) 367– 377 369

2.1. Sample and hold framework

Knowing that we require a discrete-time impulse response in
order to invoke the Ho–Kalman method, we  take advantage of a
well known result from discrete-time system theory. Namely, the
discrete-time transfer function H(z) corresponding to a continu-
ous time transfer function, H(s), assuming that the input to H(s) is
piecewise constant with period Ts, is [6]:

H(z) = Z
[

1 − e−sTs

s
H(s)

]
= Z

[
(1 − e−sTs )

H(s)
s

]
= Z

[
H(s)

s

]
− z−1Z

[
H(s)

s

]
.

(2)

This equation is typically used for analytic computations, but we
will use it numerically. Note that the very compact notation Z[  · ]
means: “find the continuous-time time-domain function corre-
sponding to the Laplace-transform frequency-domain argument,
then sample the continuous-time time-domain function, then take
the z-transform of the samples.” Noting that H(s)/s is the step
response of H(s), we  see that Eq. (2) shows that the discrete-time
impulse response corresponding to H(z) is a one-step difference
of the z-transform of the sampled continuous-time step response.
This implies that

h[k] = hs[k] − hs[k − 1], (3)

where hs[k] is the discrete-time step response of the system with
Hs(z) = Z[H(s)/s].

We are interested in computing h[k] of Eq. (3),  so we must first
compute hs[k]. This could be done by working with H(s)/s, but doing
so has numeric issues as s → 0. Instead, we recognize that H(s)/s
represents the step response of the system, which can also be com-
puted in the time domain by integrating the impulse response. That
is the approach we  take here.

We approximate the continuous-time impulse response via a
“discrete equivalent” or frequency-domain emulation approach
[21]. This allows us to write

Hd(z) ≈ H (s)
∣∣
s= 2

T1
z−1
z+1

where T1 is an emulation sampling period (different from and gen-
erally significantly shorter than the final system sampling period
Ts).2

We  now recognize that the discrete Fourier transform (DFT) of
a sequence is related to its z-transform via the relationship [23]

Hd[f ] = Hd(z)
∣∣
z=exp(j2�f/N)

= H

(
2
T1

[
ej2�f/N − 1
ej2�f/N + 1

])
, 0 ≤ f < N,

(4)

where N is the number of points chosen for the underlying
d d

2 In order to arrive at an accurate estimation of the continuous time transfer func-
tion, the sampling frequency, F1 = 1/T1, must be high enough to capture the system
dynamics. As a rule of thumb, the sampling frequency must be at least 20 times the
as  great as the bandwidth of the system to get an rough approximation in the fre-
quency domain [22]. A higher emulation sampling frequency gives more accurate
results.



3 wer So

t
p

h

T
a

h

T
d
o

2

f
t
p

G

F
t
G
a
m
f

H

H

W
r
m
o
e
s
t
e
d

i

c
i
a

70 J.L. Lee et al. / Journal of Po

he continuous-time impulse response at the emulation sampling
eriod, T1

d[n] = 1
N

N−1∑
f =0

Hd[f ]ej2�fn/N. (5)

he cumulative summation of this impulse response yields the
pproximation to the continuous-time step response

step[k] = T1

k−1∑
i=0

hd[i]. (6)

his result is interpolated with sample period Ts to give hs[k]. The
ifference between hs[k] and hs[k − 1] gives the impulse response
f the system via Eq. (3).

.2. The Ho–Kalman method

The following discussion of the Ho–Kalman algorithm closely
ollows Ref. [24]. Given the impulse response of the system we  find
he A, B, and C state space matrices of Eq. (1) and an approximation

 to the system order n.
The Markov parameters, Gk, of the system are given by,

k =
{

D, k = 0
CAk−1B, k = 1, 2, . . .

or a single-input single-output system, these are simply equal to
he discrete-time impulse-response sequence of the system (i.e.,
k = h[k] from Eq. (3)). Multi-input multi-output systems can be
ccommodated in a straightforward way by both the Ho–Kalman
ethod and therefore the DRA, but we omit the extra complexity

rom our discussion by focusing on the simpler case.
Given the Markov parameters, we can form the system block

ankel matrix

l,m =

⎡
⎢⎢⎢⎢⎣

G1 G2 G3 · · · Gm

G2 G3 G4 · · · Gm+1
G3 G4 G5 · · · Gm+2
...

...
...

. . .
Gl Gl+1 Gl+2 Gl+m−1

⎤
⎥⎥⎥⎥⎦ .

e see now that the required length of the discrete-time impulse
esponse is N = l + m. Further, a requirement of the Ho–Kalman
ethod is that both m and n be at least as large as the reduced-

rder-model’s order p. We  usually choose l = m, so N ≥ 2n.3 When
xecuting the Ho–Kalman method the first time, when the actual
ystem order is uncertain, an assumed upper bound of the sys-
em order is chosen a priori. This bound can later be verified by
xamining the singular values of the Hankel matrix, as we will

emonstrate.

An interesting feature of the block Hankel matrix, which is crit-
cal for this development, is that it can be written as Hl,m = OlCm,

3 For transcendental transfer functions having an infinite number of poles, we
annot choose N to be twice the number of actual poles. We find that best accuracy
s  achieved when N is chosen such that the approximate discrete-time impulse used
s  input to the Ho–Kalman algorithm response settles to near its steady-state value.
urces 206 (2012) 367– 377

where the extended observability matrix, Ol , and the extended con-
trollability matrices, Cm, are defined as,

Ol =

⎡
⎢⎢⎢⎢⎣

C
CA

CA2

...
CAl−1

⎤
⎥⎥⎥⎥⎦

Cm =
[

B AB A2B · · · Am−1B
]

.

If we are able to factor Hl,m into Ol and Cm, then we  can directly
extract the desired C matrix as the top block row of Ol and the
desired B matrix as the left block column of Cm. We  can do further
processing to find the A matrix.

To do the factoring, we rely on the singular value decomposi-
tion (SVD) [25], which allows us to write Hl,m = U�VT , where U
and V are orthogonal matrices, and � is a diagonal matrix with
non-negative entries. The diagonal of � holds the so-called singu-
lar values of Hl,m, which are ordered such that �1 ≥ �2 ≥ . . . ≥ �m.
The magnitude of the singular values is a measure of the relative
importance of its corresponding state to the overall system behav-
ior. By counting the “large” singular values, we  arrive at an estimate
p of the system order. We  then rethink the singular value decom-
position as

Hl,m =
[

U1 U2
][

�1 0
0 �2

] [
VT

1
VT

2

]
= U1�1VT

1︸  ︷︷  ︸
retained

+ U2�2VT
2︸  ︷︷  ︸

discarded

,
(7)

where �1 ∈ Rp×p and we retain only Hl,m ≈ U1�1VT
1 . The approx-

imation is exact if �2 = 0. We  know from the Schmidt–Mirsky
theorem that this approach yields a globally optimum p-rank
approximation [26].

It is possible to show that the original system’s extended observ-
ability matrix and the extended controllability matrix are related
to the singular value decomposition via

Ol = U�1/2T, and Cm = T−1�1/2VT , (8)

where T is an invertible similarity transformation matrix that deter-
mines the basis in which the A, B, C, and D matrices are defined. This
basis is not important for the function of the reduced-order model,
so we  simply set T = I and compute Ol = U1�1/2

1 and Cm = �1/2
1 VT

1 .
At this point the order of the reduced-order model, p, has been

determined from the singular values. The B matrix has been found
by taking the first block row of Cm. Likewise, the C matrix has been
found by taking the first block column of Ol . It remains to find A
and D.

The A matrix can be found via the relationship,⎡
⎢⎢⎢⎣

C
CA

CA2

CAl−2

⎤
⎥⎥⎥⎦A =

⎡
⎢⎢⎢⎣

CA

CA2

CAl−1

⎤
⎥⎥⎥⎦ .

The matrix on the left side of the equation is Ol−1 and the matrix on
the right hand side of the equation is O↑

l
where the ↑ represents an

upward shift of the matrix. The A matrix may  be solved from this

relationship by matrix manipulations and back substitution, and
the solution may  be written as

A = O†
l−1O

↑
l
,
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here the symbol †  represents the matrix pseudo inverse [25].
inally, the D matrix is the first Markov parameter but can often
e better found numerically by using the initial value theorem for

 discrete time system,

 = G0 = h[0] = lim
z→∞

H(z). (9)

he singular values of the system Hankel order provide clear insight
nto the relative importance of each state. Instead of merely trun-
ating all higher order states balanced residualization [27] could be
sed to include some of the behavior of these less important states

n the final realization. For example if a final third order system is
esired, the Ho–Kalman method could be used to produce a sixth-
rder system. The balanced residualization technique could then be
sed to reduced the system to third order, incorporating behavior
rom the least important three states.

.3. Dealing with one or more poles in H(s) at the origin

If the original system, H(s), has a pole at the origin, it is not
trictly stable, so violates the necessary conditions that make the
RA work. However, it is quite simple to deal with this case. We
rst subtract the pole at the origin from the transfer function,
hen execute the DRA on the residual system, then compute a final
iscrete-time state-space model that augments the DRA result with
dditional dynamics to implement the function of the s-domain
ole at the origin (we apply the same general approach to remove
ultiple poles at the origin, or poles elsewhere on the imaginary

xis of the s-plane).
A pole at the origin is removed by first calculating the residue of

his pole and then subtracting it from the original transfer function.

∗(s) = H(s) − res0

s
(10)

here res0 is calculated as

es0 = lim
s→0

sH(s). (11)

he remainder of the DRA is executed using H*(s) instead of H(s).
To see how to re-incorporate the effect of the s-plane pole at

he origin into the final reduced-order model, recall that a pole at
he origin of the s-plane corresponds to an integrator. The discrete-
ime equivalent of an integrator with gain res0 can be implemented
s

xi[k + 1] = xi[k] + Tsu[k].
yi[k] = res0xi[k]

herefore, we can implement a reduced-order approximation to
he original system via the augmented discrete-time state-space

odel:

(12)
(13)

he A, B, and C matrices in the above equations are those generated
y Step 3 of the DRA.
urces 206 (2012) 367– 377 371

2.4. Summary of the DRA

Here, we put together all the steps of the DRA in one place,
summarizing the method.

• If the original system H(s) has a pole at the origin, determine res0
using Eq. (11) and compute H*(s) using Eq. (10). Computer code
can automatically determine whether H(s) has a pole at the origin
by substituting small values of s. If |H(s)|→ ∞,  then this “zeroth”
step must be performed. Perform the following four steps of the
DRA using H*(s) instead of H(s).

• Step 1: Select an emulation sampling period T1 such that 1/T1
is significantly greater than the bandwidth of H(s), and N is at
least twice as large as the assumed reduced-order model dimen-
sion. Compute Hd[f] using Eq. (4), and then the approximate
continuous-time impulse response via Eq. (5).

• Step 2: Find the approximate continuous-time step response of
H(s) via Eq. (6).  Then, interpolate at the final desired sample rate
Ts to give hs[k]. Difference hs[k] according to Eq. (3) to yield h[k],
the discrete-time impulse response for H(s).

• Step 3: Populate the Hankel matrix Hl,m with the discrete-time
impulse response values h[k]. Perform the singular value decom-
position of Hl,m and determine from the singular values the
system order p. Partition the singular value decomposition to give
the matrices U1, �1, and VT

1 . From these, compute Ol and Cm via
Eq. (8).  Compute the reduced-order-model matrices A, B, and C
from Ol and Cm. Compute D via Eq. (9).

• Step 4: Depending on the application it may be beneficial to do a
similarity transformation of the state space system. For example,
diagonalizing the A matrix could speed up the calculations, which
could be important if this is used in a real time control application
[28].

• Finally, if the original system H(s) has a pole at the origin, find the
final state-space form via Eqs. (12) and (13).

Note that the steps of the DRA require only standard linear-algebra
and signal-processing routines. The method finds the globally opti-
mal  reduced-order discrete-time approximation to the original
continuous-time system. It does not require nonlinear optimiza-
tion, and does not require iteration.

3. Examples to illustrate the method

We  now look at three different examples to illustrate the oper-
ation of the DRA. The first two  examples are rational-polynomial
transfer functions, which we  use because we can calculate the exact
solution using other methods [29]. We  can then compare the exact
solutions to the approximate solutions obtained by the DRA. The
third example does not have a closed-form exact solution, but we
can use a 1-D parabolic–elliptic partial differential equation solver
to find an accurate near-exact solution against which to compare
the DRA solution. We  find excellent agreement between the exact
solutions and DRA solutions in all cases.

3.1. Example 1: rational polynomial transfer function

The DRA method is first applied to a simple second-order sys-
tem. We  require a discrete-time realization with the a sampling
period of Ts = 0.1 s from the continuous-time transfer function

H1(s) = s2 + 20s + 100
s2 + 2s + 8

. (14)
This system has complex poles at −1 ± j2.65 rad s−1 and two  zeros
at 10 rad s−1. The magnitude response of H1(s) is shown in Fig. 1.

Step1: The sampling frequency is selected as 256 Hz which is sig-
nificantly greater than the system bandwidth. The sampling length
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Fig. 1. Bode magnitude plot for Example 1.
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 is set to 64 which allows up to a 32 × 32 system Hankel matrix
n Step 3. The transfer function is sampled at discrete frequencies
ccording to Eq. (4).  The inverse DFT yields an approximation to
he continuous time impulse response. Fig. 2 compares the approx-
mate continuous-time impulse response computed via the inverse
FT to the exact continuous-time impulse response of Eq. (14). We

ee that the two solutions are coincident.
Step 2: The approximation to the continuous-time step response
s found by doing a cumulative summation of the impulse response.
he results for this example are shown in Fig. 3 and show excellent
greement with the exact step response of the continuous time
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Fig. 3. Step responses for Example 1.
Fig. 4. Discrete-time impulse response at a sampling period of 0.1 s for Example 1.

system. We  linearly interpolate the step response to give values at
integer multiples of 0.1 s. The down-sampled step response is dif-
ferenced to yield the discrete-time impulse response of Fig. 4. Again,
there is excellent agreement between the approximate impulse
response and the exact solution, with the exception of the single
point at t = 0. This is often the case because of some properties of the
inverse DFT, but it causes no problems since the impulse response
value at t = 0 is not used by the Ho–Kalman algorithm in Step 3, and
the D matrix (which is equal to the impulse response value at t = 0)
is computed differently, using Eq. (9).

Step 3. The deterministic Ho–Kalman algorithm is used to
find a state-space realization from the approximate discrete-
time impulse response from Step 2. The approximation of the
continuous-time impulse response was truncated in Step 1 to 64
points, which allows a maximum Hankel matrix of 32 × 32. The SVD
of the Hankel matrix gives insight into the order of the system. A log
plot of the singular values is shown in Fig. 5. The first two  singular
values are almost three orders of magnitude greater than the third
singular value, so we select a reduced-order model dimension p = 2.

Truncating to the first two states only, the Ho–Kalman algo-
rithm gives a state-space realization with the following A, B, and C
matrices

A =
[

0.8656 −0.2367
0.2367 0.8811

]
B =

[
−1.624
0.7694

]
C =

[
−1.624 −0.7694

]
.

The D matrix is found from the initial value theorem and, for this
example, is D = [1].

Fig. 5. Singular values indicate only two significant states in Example 1.
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istic, but small because the residues of the true system and the
DRA are close. The error can be decreased further by increasing the
or Example 1.

Step 4: We  have chosen not to transform the system represen-
ation in this example.

A comparison of the impulse response of the DRA discrete-time
tate-space realization to the exact impulse response is shown in
ig. 6. The results agree very well (note that the impulse response
alue at t = 0 has been corrected by the correct calculation of the D

atrix in Step 3). Because the impulse responses agree very well,

he response of the reduced-order model will also agree well with
he exact response for any input signal u[k].
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The residual error between the exact solution and the DRA is
seen by comparing the pole-residue representation of the discrete
time systems. The transfer function of the true discrete-time system
can be written as,

H1(z) = a

z − p1
+ b

z − p2

where p1 and p2 are poles and a and b are the corresponding
residues. In this example the poles, p1 and p2, can be solved for ana-
lytically, and are 0.87335 ± j0.2366 and the residues likewise can
be found to be 1.019 ∓ j1.205. For the DRA realization, the poles
are computed to be at the same location (up to the fifth signifi-
cant figure) but the residues are computed to be 1.023 ∓ j1.197.
The residuals transfer function is,

Ĥ1(z) = a  − adra

z − p1
+ b − bdra

z − p2

where adra and bdra are the residues of the DRA realization. At
the 256 Hz sampling frequency, the residue errors for Ĥ1(z) are
−0.00418 ∓ j0.00762. The residual transfer function is determin-
sampling frequency. For example, sampling at 512 Hz decreases the
residue errors for Ĥ1(z) to −0.00211 ∓ j0.00379 .
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, and (b) the system after removing the pole at the origin.
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responses for Example 2 using the DRA.
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In the first two  examples, we used rational polynomials to illus-
.2. Example 2: rational polynomial transfer function with a pole
t the origin

In this example, we demonstrate how to handle a single pole at
he origin. The continuous-time transfer function is given by

2(s) = 1
s

(
1

s2 + 6s + 8

)
. (15)

his system has real poles at 0, 2 and 4 rad s−1. We  require a
iscrete-time transfer function with a sampling period of Ts = 0.1 s.
rior to Step 1 we remove the pole at the origin. This is accom-
lished by first calculating the residue for this pole. In this
olynomial example, the residue can be computed analytically as

es0 = lim
s→0

sH(s) = 0.125.

n general, we find this residue by selecting a very small value for
 and numerically computing res0. The reduced transfer function,
∗
2(s) with the pole at the origin removed is

∗
2(s) = 1

s

(
1

s2 + 6s + 8

)
− 0.125

s
.

ig. 7 shows the magnitude plot of the original system and the
ystem with the pole at the origin removed.

Step 1: H*(s) is sampled at 256 Hz which is significantly greater
han the system bandwidth. The approximate continuous-time
mpulse response is computed and plotted in Fig. 8(a). The length
f the impulse response is truncated to 64 samples which allows
or a Hankel matrix up to 32 × 32.

Step 2: the approximation to the continuous-time step response
f H∗

2(s) is calculated as in the first example and plotted in Fig. 8(b).
his step response is sampled at Ts = 0.1 s, and differenced to yield
he discrete-time impulse response, plotted in Fig. 9.

Step 3: The system Hankel matrix is generated from the discrete-
ime impulse response found in Step 2. Fig. 10 depicts the 32
ingular values of the system Hankel matrix. The first two singular
alues are two orders of magnitude greater than the third, indicat-
ng that H∗

2(s) is a second order system. The Ho–Kalman algorithm

enerates the A, B, and C matrices after truncating all but the first
wo states. The value of D in this example is 0.
Fig. 11. Output comparison of the DRA realization to the exact answer for Example
2.

Step 4: The state-space representation found in Step 3 is aug-
mented to include the pole at the origin according to Eqs. (12) and
(13). The discrete-time realization of H2(s) is

Fig. 11 shows close comparison of the impulse response found from
the DRA and the exact solution. The poles of the exact discrete-time
system are found at 1, 0.819 and 0.670 with corresponding residues
of 0.125, −0.0227 and 0.0103. The difference in residues between
the exact solution and the DRA realization are 0, −8.88 × 10−5 and
8.03 × 10−5.

3.3. Example 3: transcendental transfer function
trate the DRA method where order of the system is known a priori,
and the exact answer could be calculated analytically. We  will now
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H∗
3(s) = �cs,e(s)

jLi(s)
= Rs

asDsF

[
(ˇ2 + 3) tanh(ˇ) − 3ˇ

ˇ2(tanh(ˇ) − ˇ)

]
.

Table 1
Parameters used in Examples 3a and 3b.

Parameter name Interpretation Value

T Sampling period 1 s
Time (sec)

Fig. 13. Continuous tim

emonstrate the DRA with an infinite-order distributed-parameter
ystem. Specifically the algorithm is used on a model of lithium dif-
usion in a spherical solid particle of an electrochemical cell which
s described by,

∂cs

∂t
= Ds

r2

∂
∂r

(
r2 ∂cs

∂r

)
,

ith boundary conditions,

∂cs

∂r

∣∣∣∣
r=0

= 0

−Ds
∂cs

∂r

∣∣∣∣
r=Rs

= jLi(t)
asF

.

n these equations, cs is the concentration of lithium in the elec-
rode particle and r is the radial distance from the center of the
article. The range of r is from 0, the center of the particle, to Rs, the
adius of solid electrode particle. Ds is the solid diffusivity and F is
araday’s constant. The specific interfacial surface area is as and jLi

s the reaction current. The continuous-time transfer function for
his system was derived by Jacobsen and West [30]

3(s) = cs,e(s)
jLi(s)

= Rs

asDsF

[
tanh(ˇ)

tanh(ˇ) − ˇ

]
, (16)

√

here  ̌ = Rs s/Ds and cs,e(t) = cs(Rs, t) is the surface concentration

f lithium. The transfer function has a pole at the origin. In Exam-
le 3a, this pole is removed in the same manner as used by Smith,
hich is to analytically subtract out the average concentration
Time (s)

onses for Example 3a.

[4]. In Example 3b, the pole is removed by the numerical residue
method. Ultimately, both examples produce a reduced-order,
discrete-time, state-space realization of Eq. (16). Table 1 lists the
parameters and values used in this example.

3.4. Example 3a: diffusion equation with pole at origin removed
exactly, analytically

The average concentration of lithium in the solid phase is given
by

cs,avg(s)
jLi(s)

= −3
RsasF

1
s

. (17)

Smith showed that subtracting Eq. (17) from Eq. (16) gives the
following transfer function, where �cs,e(s) = cs,e(s) − cs,avg(s):
s

Rs Particle radius 10−5 m
Ds Diffusivity 10−12 m2 s−1

as Specific interfacial surface area 1.74 × 105 m−1

cs(r, 0) Initial lithium concentration 10,000 mol  m−3
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3(s) for Example 3a.

e  find a reduced-order model for H3(s) by first using the DRA on
∗
3(s). The pole at the origin, given by Eq. (17), is then added as the
nal step of the procedure, and the final result is a reduced-order
tate-space realization of H3(s) .

Step 1: The magnitude responses of H3(s) and H∗
3(s) are shown in

ig. 12.  H∗
3(s) is sampled at 256 Hz for a total of 256 s. The approx-

mate continuous-time impulse response is shown in Fig. 13(a).
There is no known exact solution to the continuous-time impulse
esponse for this system against which to compare this result.)

Step 2: The approximate continuous-time step response is cal-
ulated by performing a cumulative sum of the impulse response of
tep 1. Fig. 13(b) shows the approximation of the continuous time
mpulse and step response. (Again, there is no known exact solu-
ion to the continuous-time step response for this system against
hich to compare this result.) The approximate continuous-time

tep response is sampled at Ts = 1 second, and differenced to pro-
uce the discrete time impulse response, shown in Fig. 14.

Step 3: The Hankel matrix is formed, and the singular values are
lotted in Fig. 15.  H∗

3(s) represents a distributed-parameter sys-
em that actually has an infinite number of poles. However, we  see
rom this plot that only a few of these poles are significant to the
olution. In particular, we choose to use a reduced-order model
imension p = 2 in the results we present here. This demonstrates

 tradeoff between the complexity and accuracy of the solution.
n this example, the realization is formed by truncating all but the
rst two states. Another approach would be to reduced the order

o a value higher than two and do a balanced residualization [27]
n Step 4.

Step 4: The state-space realization derived in Step 3 is aug-
ented with the integrator state to give the final third-order
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Fig. 16. Simulation results of a 10 s discharge
Fig. 15. Singular values of Hankel matrix for Example 3a.

state-space model of the diffusion equation. The final realization
is given by,

The output of this discrete-time realization to a 10 s discharge fol-
lowed by a 10 s rest is shown in Fig. 16(a). This is validated against
a solution computed by a 1-D parabolic–elliptic partial differential
equation solver. Errors between the PDE solution and DRA solu-
tion are shown in Fig. 16(b). The DRA third-order model accurately
models the system behavior.

3.5. Example 3b: diffusion equation with pole at origin removed
numerically

In Example 3a, the pole at the origin is removed exactly by sub-

tracting out the average concentration. In general, it may  be difficult
or impossible to find a closed-form algebraic function that allows
the pole at the origin to be removed exactly. For those situations,
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 followed by a 10 s rest for Example 3a.
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Fig. 17. Comparison of final results by removing the pole at the 

he pole is numerically removed prior to Step 1. The residue for the
ole at the origin is found with

es0 = lim
s→0

s
cs,e(s)
jLi(s)

= −3Rs

asDsF

hich we find using Mathematica. We  also achieve similar results
sing a very small value for s (e.g., s = 10−10). For this example
es0 = − 1.787 × 10−5. This result is subtracted from the original
ransfer function to give

H∗
3(s) = �cs,e(s)

jLi(s)

= Rs

asDsF

[
tanh(ˇ)

tanh(ˇ) − ˇ

]
− −1.787 × 10−5

s
.

he same sampling frequency (256 Hz) and the same impulse-
esponse length (256 s) are used. The singular values are very
imilar to Example 3a and again a third-order state space model
s generated. Simulation results in Fig. 17(a) show excellent agree-

ent between the analytic method and the residue method for
ccounting for a pole at the origin. Figure 17(b) shows the differ-
nce between the Example 3a and Example 3b solutions, which are
n the order of 10−3 mol  m−3.

. Conclusions

In this paper, we introduced the discrete-time realization
lgorithm (DRA) which is used to arrive at a discrete-time,
educed-order state-space model of a Laplace domain transfer
unction. This method is based on deriving an approximation to
he impulse response of the system and then using this impulse
esponse with the Ho–Kalman algorithm. Although the examples
ere for single-input–single-output systems this, method works
ith multiple-input multiple-output systems as well. Note that

he steps of the DRA require only standard linear-algebra and
ignal-processing routines. The method finds the globally opti-
al  reduced-order discrete-time approximation to the original

ontinuous-time system. It does not require nonlinear optimiza-
ion, and does not require iteration. In a future work we will use
he DRA to derive a reduced-order single-input multiple-output
ithium-ion cell model.
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